Density fluctuations increase with off-axis heating (QHS plasma, B=1T in CCW).

Interferometry System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum pressure</td>
<td>3.0 mtorr</td>
</tr>
<tr>
<td>Electron density</td>
<td>~1x10^14 cm^-3</td>
</tr>
<tr>
<td>Electron temperature</td>
<td>3 eV</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>4.5 T</td>
</tr>
<tr>
<td>Plasma current</td>
<td>2.5 MA</td>
</tr>
</tbody>
</table>

Density Fluctuations Increase with Off-Axis Heating (QHS Plasma, B=1T in CCW)

Plasma Parameters

- **Parameters:**
 - Electron density
 - Electron temperature
 - Magnetic field
 - Plasma current

Change in Density Fluctuations with Heating Locations

- **3 Different Electron Heating Scenarios**
 - Off-axis (n=2) interferometer
 - On-axis interferometer
 - Background interferometer

Density Fluctuations Increase with ECRH Power

- **Scenarios:**
 - 0% ECRH
 - 10% ECRH
 - 30% ECRH

Flows Approximately Follow the Helical Direction of Symmetry

- **Direction:**
 - ECRH power increases
 - Core localized density gradient is reduced
 - Density fluctuations are suppressed

Bias Excited Mode Located at the Edge, 15kHz Mode Located in Plasma Core

- **Differential interferometer measurement at the core**
 - Bias reduced mode is not observed by core differential interferometer measurement
 - Coherent mode at 15kHz is observed and frequency does not change with Biasing (not localized)

Broadband Density Fluctuations Suppressed During ECRH Heating

- **Energy and Core Density Fluctuations are consistent with driven gradient mode**
 - ECRH power increases
 - Core and edge density fluctuations are suppressed

Summary and Future Plans

1. **Interferometry and Differential Interferometry are used to measure density fluctuations in HSX:**
 - Two interferometer measurements: spatial information available by comparing data
 - Differential interferometry is used to obtain core localized measurements

2. **Both coherent modes and broadband fluctuations are observed:**
 - For Off-Mode:
 - Significant changes (amplitude and frequency) of fluctuations are observed with changes in heating location and power
 - Density and temperature fluctuations are consistent with density gradient drive (not T gradient)

3. **Broadband density fluctuations are accompanied in plasma core:**
 - Positive biasing can excite coherent oscillations in the plasma edge
 - Changes in density fluctuation amplitude (edge and core) consistent with driven gradient mode

4. **Mirror plasmas:**
 - Core and edge density fluctuations signal only broadband fluctuations and plasma flow similar to those in QHS plasmas

Future work will focus on identification of fluctuations and relation to transport