1. ECE Radiometer

- The spectrum of the Electron Cyclotron Emission (ECE) from HSX is measured with an eight channel radiometer at a magnetic field of 0.5 T.
- The central region of the plasma is not accessible because the plasma is heated by the extraordinary wave at the second harmonic.
- A low-pass filter with 60 dB attenuation in the band of 150-300 GHz reduces pickup from the heating source at its second harmonic.

2. Calibration

- Calibration has been made for two sets of eight IF filters — one set for receiving the electron cyclotron emission from the low magnetic field side and the other one — from the high magnetic field side.
- The phase difference between ECE signals on the either side of the magnetic axis is about 90 degrees.
- The integrated response has been calculated assuming that the plasma is a black body. These calculations are used to estimate the plasma density.

3. Results of measurements

- ECE channels have been calibrated against the electron temperature measured by Thomson scattering (TS) diagnostic in the plasma with off-axis heating.
- The spectrum of the Electron Cyclotron Emission (ECE) from HSX is measured with an eight channel radiometer at a magnetic field of 0.5 T.
- The central region of the plasma is not accessible because the plasma is heated by the extraordinary wave at the second harmonic.
- A low-pass filter with 60 dB attenuation in the band of 150-300 GHz reduces pickup from the heating source at its second harmonic.

4. Bi-Maxwellian plasma model

5. CQL3D code

CQL3D code is used to simulate the electron cyclotron heating in QHS and to calculate a radiation intensity at the second harmonic of Vece.

On the left figures the results of two runs are shown.

The plasma parameters are as follows: central T_e = 0.4 keV, central N_e = 10^{18} m^{-3} and input power is 100 kW.

On the left bottom figure it is clearly seen that the ECE temperature for the non-Maxwellian electron distribution function is above 4 keV.

Further work should be done to understand why CQL3D predicts low ECH absorption in HSX plasma.

HSX Plasma Laboratory, University of Wisconsin, Madison, WI, USA; 1UCLA, CA, USA; 2UC, Davis, CA, USA; 3Cornell University, Ithaca, NY, USA

On the right figures the results of two runs are shown.

The plasma parameters are as follows: central T_e = 0.4 keV, central N_e = 10^{18} m^{-3} and input power is 100 kW.

On the left bottom figure it is clearly seen that the ECE temperature for the non-Maxwellian electron distribution function is above 4 keV.

Further work should be done to understand why CQL3D predicts low ECH absorption in HSX plasma.

4.1 QHS Spectrum

4.2 Mirror Spectrum

5.1 Maxwellian Electron Distribution Function

5.2 Non-Maxwellian Distribution Function

47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado