Biasing against direction of ambient flow points are $E \times B$ and soft QHS: + biasing increases $E \times B$ flow (edge) in ion drift direction profile. Can mode frequency be explained by plasma rotation? How do flows affect Alfvenic mode growth/damping rate and frequency? Biasing: $D_{//} \approx 200 \, \text{cm}$ for $m=1, n=1$. Ambient plasma potential is (+) $T_{2nd\, Harmonic\, X} = 50 \, \text{kHz}$ for $m=1, n=1$. Local density perturbation shape is guessed using 5th order polynomial. If iota is lowered < 1, GAE gap disappears and measurements made. Biasing decreases mode frequency. Fast particles are quasi-monoenergetic. Bias Probe ($V_B=0$): No mode observed for opposite bias. QHS Plasma (Red) and Mirror Mode (Blue) emission: QHS $>>$ Mirror. Evidence for Fast Electron Driven Alfvenic Mode in the HSX

Open Issues

1. Why are the plasma core and plasma edge seen at the same time?
2. What is the role of fast ions in the Alfvenic mode generation?
3. How does the biasing affect the Alfvenic mode dynamics?

Energetic-Electron-Driven Alfvenic Mode in the HSX