Evidence for Fast-Electron-Driven Alfvénic Modes in the HSX Stellarator

D.L. Brower and C. Deng

University of California, Los Angeles

D.A. Spong

Oak Ridge National Laboratory

University of Wisconsin-Madison

June 28, 2005 EPS-Tarragona
HSX Provides Access to Configurations With and Without Symmetry

QHS: helical axis of symmetry in |B|; predicted very low neoclassical transport
Mirror: quasi-helical symmetry broken by adding a mirror field.

QHS: Helical Bands of Constant |B|

Mirror: Helical Bands are Broken

Conventional stellarators exhibit poor neoclassical transport in low-collisionality regime due to magnetic field ripple
HSX
major radius: 1.2 m
minor radius: 0.15 m
magnetic field: 0.5 T
28 GHz ECRH: <150 kW
pulse length: < 50 ms
Outline

1. Characteristics of observed fluctuations
 - Quasi-Helically Symmetric (QHS) configuration
 - Mirror (MM) configuration (conventional stellarator)

2. Alfvén Continua for QHS and Mirror Mode Plasmas (conventional stellarator) in HSX

3. Evidence for fast-electron driven GAE mode

4. Effect of biasing on Alfvénic mode

GOAL

1. Observe Alfvénic modes driven by fast electrons
2. Quasi-Helical Symmetry makes a difference
Flux Surfaces and Interferometer Chords

Interferometer System:

1. 9 chords
2. 200 kHz B.W.
3. 1.5 cm chord spacing
Coherent Density Fluctuations

For $P_{ECRH} > 100$ kW, confinement degrades
Mode perturbs particle orbits leading to enhanced loss
No mode observed in Mirror Configuration Plasma

10% Mirror perturbation
Fluctuation Features

- only observed in QHS plasmas
- coherent, $m=1$ ($n=\ ?$)
- localized to steep gradient region
- satellite mode appears at low densities, $f \sim 20 \ kHz$
- propagates electron drift direction
- **Electromagnetic component**

![Plot 1](image1)

- $m=\text{odd} \ [1]$
- ![Plot 2](image2)

![Plot 3](image3)
Observed Fluctuations Associated with ECRH

- Mode disappears \(\sim 0.2 \) msec after ECRH turn-off,
- faster timescale than \(W_E \) and soft x-rays
- 2nd Harmonic X-mode generates nonthermal electrons (ECE)
 (no source for fast ions: \(T_i \sim 20 \) eV) \(T_{e\perp} >> T_{e//} \)

Modes are driven by energetic electrons
Alfvénic Modes

Historically, Alfvénic modes have been observed on tokamaks or stellarators with NBI or ICRF to generate fast particles.

Alfvénic modes are generated if

1. resonance condition: \(V_p \geq V_A \) (\(V_p \): particle velocity) for trapped particles, \(\bigcup_{Dh} = \bigcup_{Alfven} \)
 where \(\bigcup_{Dh} \) is the trapped-particle precessional drift frequency,
 \[\text{depends on particle energy, not mass} \]

2. unstable when: \(\bigcup_{dia}^* > \bigcup_{Alfven} \)
 where \(\bigcup_{dia}^* \) is the diamagnetic drift frequency
 \[\text{energetic ions or electrons can drive instability} \]
HSX: Quasi-Helically Symmetric (QHS) configuration
Normal mode Alfvén continua: \(n = 1 \) mode family

Quasi-Helical Symmetry: Helical axis of symmetry, no toroidal curvature

- GAE Gap: \(B=0.5 \) T
 0 - 50 kHz for \(m=1, n=1 \)
 \(n_e(0)=1.8 \times 10^{12} \) cm\(^{-3} \)

- Only minor changes for mirror configuration
Mode frequency scaling with ion mass density

\[\Box_{\text{GAE}} \Box_{k/} v_A = \frac{(m/i \nabla n)}{R} \frac{B}{\sqrt{4 \Box n_i m_i}} \]

- frequency and mass density scaling consistent with Alfvénic mode
- If iota is lowered < 1, GAE gap disappears and **mode not observed**
Density fluctuations *decrease* with introduction of symmetry breaking (toroidal mirror) term.

Fluctuation no longer observed for Mirror perturbation $>2\%$
(conventional stellarator configuration: $\sim10\%$ mirror perturbation)
Soft X-ray, Hard X-ray Emission for QHS and Mirror

- Soft X-ray (600 eV-6 keV) emission
 QHS>>Mirror

- Hard X-ray flux:
 QHS>>Mirror
decay time longer

- fast particles are better confined in QHS

- \(D_{Dh} = D_{GAE} \):
 5-10 keV particles

- fast particles (trapped electrons) are better confined for QHS
- provide drive for Alfvénic modes
Result: QHS Flows Damp More Slowly, and, Go Faster For Less Drive

Viscous Damping is Reduced for QHS

Other parameters ($n_e = 1 \times 10^{12} \text{cm}^{-3}$, $n_n \leq 1 \times 10^{10} \text{cm}^{-3}$ $T_i \leq 25 \text{eV}$, $B = 0.5 \text{T}$, $P_{ECH} = 50 \text{kW}$) held constant.

S.P. Gerhardt et al., PRL 94,015002(2005)
QHS: + biasing increases *amplitude* and decreases *frequency*

- amplitude increases 50-100%
- frequency decreases 10-20%
Alfvenic mode frequency shift can be used to measure core flow dynamics

\[
\begin{align*}
 f_{\text{lab}} &= f_{\text{GAE}} + f_{\text{Doppler}} = f_{\text{GAE}} + \frac{1}{2} k \cdot v_{\text{Doppler}} = f_{\text{GAE}} + \frac{m}{r} \frac{E_r}{2 B_o} \\
 \square f_{\text{lab}} &= f_{\text{lab}} \bigg|_{w/\text{bias}} \quad \square f_{\text{lab}} \bigg|_{w/o\text{bias}} = \square f_{\text{Doppler}} = \frac{m}{r} \cdot \frac{\square E_r}{2 \square B_o} \\
 \square f_{\text{lab}} &\square 5 \square 10 \text{ kHz;} \quad \square E_r \square 5 \square 10 \text{ V/cm} \quad \text{for plasma core with bias}
\end{align*}
\]

During biasing: \(n_e \) and \(B \) do not change so \(V_A \) is constant

Ambient plasma potential is (+)

ExB flow in ion drift direction

Alfvenic mode propagates in electron diamagnetic drift direction?
QHS: - biasing decreases mode amplitude and increases frequency

- Biasing against direction of ambient flow
Mirror Mode: Alfvenic Mode observed with + biasing

No Alfvenic mode observed between bias pulses

Mirror Mode: mode observed w/bias in direction of ambient flows
no mode observed for opposite bias
Evidence for Alfvenic mode in HSX

1. Calculations of Alfven Wave Continuum by 3-D STELLGAP code shows the possibility of GAE mode in HSX

2. Measure a coherent fluctuation global mode \([m=\text{odd } (1?)]\) with frequency and ion mass density scaling is consistent with Alfvenic mode \((B \text{ scaling unknown})\).

3. Measurements suggest that the fluctuation is most likely driven by non-thermal electrons

4. Alfvenic Mode is only observed for QHS configuration, not for Mirror Configuration (2%)

5. Biasing: \(\mathcal{D}f_{\text{lab}}\) may provide information on core \(E_r\) and flow dynamics!
 - How do flows affect to Alfvenic mode growth rate?

Mode amplitude can be controlled by (1) flows and (2) configuration